Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Elkins, Christopher A (Ed.)ABSTRACT Municipal wastewater harbors diverse RNA viruses, which are responsible for many emerging and reemerging diseases in humans, animals, and plants. Although genomic sequencing can be a high-throughput approach for profiling the RNA virome in wastewater, wastewater processing methods often influence sequencing outcomes. Here, we systematically evaluated two wastewater processing methods, tangential-flow ultrafiltration (TFF) and Nanotrap Microbiome A Particles, for detecting the target RNA virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via amplicon sequencing and characterizing the RNA virome using whole-transcriptome shotgun sequencing. Our results from paired comparison tests showed that the TFF and Nanotrap methods recovered similar SARS-CoV-2 variants at the lineage level (analysis of similarity [ANOSIM]R= −0.012,P= 0.874). Optimizing automated procedures for the Nanotrap method and concentration factors for the TFF method was critical for achieving high-depth and high-breadth coverage of the target virus genome. Notably, the two methods enriched distinct RNA viromes from the same wastewater samples (ANOSIMR= 0.260,P= 0.002), with TFF samples showing 22-fold and 7-fold higher relative abundances ofReoviridaeandCoronaviridae, respectively. These differences are likely due to the distinct virus concentration mechanisms employed by each method, which are influenced by liquid-solid partitioning of virus particles and interactions of viral surface proteins with ligands. Our findings underscore the importance of optimizing wastewater processing methods for genomic monitoring and have implications for broader environmental applications.IMPORTANCEWastewater genomic sequencing is an emerging technology for tracking viral infections within communities. However, different methods for concentrating viruses and extracting nucleic acids can influence the recoveries of RNA virome from wastewater. An in-depth understanding of virus concentration mechanisms and their impact on sequencing data quality and bioinformatic output would be critical to guide method selection and optimization. Specifically, this study systematically evaluated tangential-flow ultrafiltration and Nanotrap microbiome particles for their application to sequence SARS-CoV-2 and whole RNA virome from wastewater. Both methods yielded high-quality sequencing data for amplicon sequencing of SARS-CoV-2, but their outcomes diverged in the recovered RNA virome. We identified RNA viruses that are preferentially recovered by each of these two methods and proposed considerations of method selection for future studies of wastewater RNA virome.more » « lessFree, publicly-accessible full text available August 29, 2026
- 
            Elkins, Christopher A (Ed.)ABSTRACT Antibiotics are often used to treat severeVibrioinfections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009–2012 and 2019–2022).Vibrio parahaemolyticus(n= 134) andVibrio vulnificus(n= 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%–96%) ofV. parahaemolyticusisolates from both sampling periods were resistant to ampicillin and only 2%–6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistantV. vulnificusisolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%–8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns amongV. parahaemolyticusandV. vulnificusrecovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibriospp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, someVibrioisolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed withVibrio vulnificusinfections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severeVibriospp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion.more » « less
- 
            Elkins, Christopher A (Ed.)ABSTRACT Wastewater-based epidemiology (WBE) expanded rapidly in response to the COVID-19 pandemic. As the public health emergency has ended, researchers and practitioners are looking to shift the focus of existing wastewater surveillance programs to other targets, including bacteria. Bacterial targets may pose some unique challenges for WBE applications. To explore the current state of the field, the National Science Foundation-funded Research Coordination Network (RCN) on Wastewater Based Epidemiology for SARS-CoV-2 and Emerging Public Health Threats held a workshop in April 2023 to discuss the challenges and needs for wastewater bacterial surveillance. The targets and methods used in existing programs were diverse, with twelve different targets and nine different methods listed. Discussions during the workshop highlighted the challenges in adapting existing programs and identified research gaps in four key areas: choosing new targets, relating bacterial wastewater data to human disease incidence and prevalence, developing methods, and normalizing results. To help with these challenges and research gaps, the authors identified steps the larger community can take to improve bacteria wastewater surveillance. This includes developing data reporting standards and method optimization and validation for bacterial programs. Additionally, more work is needed to understand shedding patterns for potential bacterial targets to better relate wastewater data to human infections. Wastewater surveillance for bacteria can help provide insight into the underlying prevalence in communities, but much work is needed to establish these methods. IMPORTANCEWastewater surveillance was a useful tool to elucidate the burden and spread of SARS-CoV-2 during the pandemic. Public health officials and researchers are interested in expanding these surveillance programs to include bacterial targets, but many questions remain. The NSF-funded Research Coordination Network for Wastewater Surveillance of SARS-CoV-2 and Emerging Public Health Threats held a workshop to identify barriers and research gaps to implementing bacterial wastewater surveillance programs.more » « less
- 
            Elkins, Christopher A. (Ed.)Seasonal epidemics and sporadic pandemics of influenza cause a large public health burden. Although influenza viruses disseminate through the environment in respiratory secretions expelled from infected individuals, they can also be transmitted by contaminated surfaces where virus-laden expulsions can be deposited.more » « less
- 
            Elkins, Christopher A. (Ed.)ABSTRACT Enterococcus bacteria inhabit human and soil environments that show a wide range of pH values. Strains include commensals as well as antibiotic-resistant pathogens. We investigated the adaptation to pH stress in E. faecalis OG1RF by conducting experimental evolution under acidic (pH 4.8), neutral pH (pH 7.0), and basic (pH 9.0) conditions. A serial planktonic culture was performed for 500 generations and in a high-pH biofilm culture for 4 serial bead transfers. Nearly all of the mutations led to nonsynonomous codons, indicating adaptive selection. All of the acid-adapted clones from the planktonic culture showed a mutation in fusA (encoding elongation factor G). The acid-adapted fusA mutants had a trade-off of decreased resistance to fusidic acid (fusidate). All of the base-adapted clones from the planktonic cultures as well as some from the biofilm-adapted cultures showed mutations that affected the Pst phosphate ABC transporter ( pstA , pstB , pstB2 , pstC ) and pyrR (pyrimidine biosynthesis regulator/uracil phosphoribosyltransferase). The biofilm cultures produced small-size colonies on brain heart infusion agar. These variants each contained a single mutation in pstB2 , pstC , or pyrR . The pst and pyrR mutants outgrew the ancestral strain at pH 9.2, with a trade-off of lower growth at pH 4.8. Additional genes that had a mutation in multiple clones that evolved at high pH (but not at low pH) include opp1BCDF (oligopeptide ABC transporter), ccpA (catabolite control protein A), and ftsZ (septation protein). Overall, the experimental evolution of E. faecalis showed a strong pH dependence, favoring the fusidate-sensitive elongation factor G modification at low pH and the loss of phosphate transport genes at high pH. IMPORTANCE E. faecalis bacteria are found in dental biofilms, where they experience low pH as a result of fermentative metabolism. Thus, the effect of pH on antibiotic resistance has clinical importance. The loss of fusidate resistance is notable for OG1RF strains in which fusidate resistance is assumed to be a stable genetic marker. In endodontal infections, enterococci can resist calcium hydroxide therapy that generates extremely high pH values. In other environments, such as the soil and plant rhizosphere, enterococci experience acidification that is associated with climate change. Thus, the pH modulation of natural selection in enterococci is important for human health as well as for understanding soil environments.more » « less
- 
            Elkins, Christopher A. (Ed.)WWTPs have been regarded as an important hot spot of ARGs. The discharge point of WWTP effluent, where ARGs may be horizontally transferred from bacteria of treated wastewater to bacteria of receiving water, is an important interface between the human-dominated ecosystem and the natural environment.more » « less
- 
            Elkins, Christopher A. (Ed.)ABSTRACT Low- and middle-income countries (LMICs) bear the largest mortality burden of antibiotic-resistant infections. Small-scale animal production and free-roaming domestic animals are common in many LMICs, yet data on zoonotic exchange of gut bacteria and antibiotic resistance genes (ARGs) in low-income communities are sparse. Differences between rural and urban communities with regard to population density, antibiotic use, and cohabitation with animals likely influence the frequency of transmission of gut bacterial communities and ARGs between humans and animals. Here, we determined the similarity in gut microbiomes, using 16S rRNA gene amplicon sequencing, and resistomes, using long-read metagenomics, between humans, chickens, and goats in a rural community compared to an urban community in Bangladesh. Gut microbiomes were more similar between humans and chickens in the rural (where cohabitation is more common) than the urban community, but there was no difference for humans and goats in the rural versus the urban community. Human and goat resistomes were more similar in the urban community, and ARG abundance was higher in urban animals than rural animals. We identified substantial overlap of ARG alleles in humans and animals in both settings. Humans and chickens had more overlapping ARG alleles than humans and goats. All fecal hosts from the urban community and rural humans carried ARGs on chromosomal contigs classified as potentially pathogenic bacteria, including Escherichia coli , Campylobacter jejuni , Clostridioides difficile , and Klebsiella pneumoniae . These findings provide insight into the breadth of ARGs circulating within human and animal populations in a rural compared to urban community in Bangladesh. IMPORTANCE While the development of antibiotic resistance in animal gut microbiomes and subsequent transmission to humans has been demonstrated in intensive farming environments and high-income countries, evidence of zoonotic exchange of antibiotic resistance in LMIC communities is lacking. This research provides genomic evidence of overlap of antibiotic resistance genes between humans and animals, especially in urban communities, and highlights chickens as important reservoirs of antibiotic resistance. Chicken and human gut microbiomes were more similar in rural Bangladesh, where cohabitation is more common. Incorporation of long-read metagenomics enabled characterization of bacterial hosts of resistance genes, which has not been possible in previous culture-independent studies using only short-read sequencing. These findings highlight the importance of developing strategies for combatting antibiotic resistance that account for chickens being reservoirs of ARGs in community environments, especially in urban areas.more » « less
- 
            Elkins, Christopher A. (Ed.)ABSTRACT Monitoring the prevalence of SARS-CoV-2 variants is necessary to make informed public health decisions during the COVID-19 pandemic. PCR assays have received global attention, facilitating a rapid understanding of variant dynamics because they are more accessible and scalable than genome sequencing. However, as PCR assays target only a few mutations, their accuracy could be reduced when these mutations are not exclusive to the target variants. Here we introduce PRIMES, an algorithm that evaluates the sensitivity and specificity of SARS-CoV-2 variant-specific PCR assays across different geographical regions by incorporating sequences deposited in the GISAID database. Using PRIMES, we determined that the accuracy of several PCR assays decreased when applied beyond the geographic scope of the study in which the assays were developed. Subsequently, we used this tool to design Alpha and Delta variant-specific PCR assays for samples from Illinois, USA. In silico analysis using PRIMES determined the sensitivity/specificity to be 0.99/0.99 for the Alpha variant-specific PCR assay and 0.98/1.00 for the Delta variant-specific PCR assay in Illinois, respectively. We applied these two variant-specific PCR assays to six local sewage samples and determined the dominant SARS-CoV-2 variant of either the wild type, the Alpha variant, or the Delta variant. Using next-generation sequencing (NGS) of the spike (S) gene amplicons of the Delta variant-dominant samples, we found six mutations exclusive to the Delta variant (S:T19R, S:Δ156/157, S:L452R, S:T478K, S:P681R, and S:D950N). The consistency between the variant-specific PCR assays and the NGS results supports the applicability of PRIMES. IMPORTANCE Monitoring the introduction and prevalence of variants of concern (VOCs) and variants of interest (VOIs) in a community can help the local authorities make informed public health decisions. PCR assays can be designed to keep track of SARS-CoV-2 variants by measuring unique mutation markers that are exclusive to the target variants. However, the mutation markers may not be exclusive to the target variants because of regional and temporal differences in variant dynamics. We introduce PRIMES, an algorithm that enables the design of reliable PCR assays for variant detection. Because PCR is more accessible, scalable, and robust for sewage samples than sequencing technology, our findings will contribute to improving global SARS-CoV-2 variant surveillance.more » « less
- 
            Elkins, Christopher A. (Ed.)ABSTRACT Antibiotic-resistant bacteria and the spread of antibiotic resistance genes (ARGs) pose a serious risk to human and veterinary health. While many studies focus on the movement of live antibiotic-resistant bacteria to the environment, it is unclear whether extracellular ARGs (eARGs) from dead cells can transfer to live bacteria to facilitate the evolution of antibiotic resistance in nature. Here, we use eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to track the movement of eARGs to live P. stutzeri cells via natural transformation, a mechanism of horizontal gene transfer involving the genomic integration of eARGs. In sterile, antibiotic-free agricultural soil, we manipulated the eARG concentration, soil moisture, and proximity to eARGs. We found that transformation occurred in soils inoculated with just 0.25 μg of eDNA g −1 soil, indicating that even low concentrations of soil eDNA can facilitate transformation (previous estimates suggested ∼2 to 40 μg eDNA g −1 soil). When eDNA was increased to 5 μg g −1 soil, there was a 5-fold increase in the number of antibiotic-resistant P. stutzeri cells. We found that eARGs were transformed under soil moistures typical of terrestrial systems (5 to 30% gravimetric water content) but inhibited at very high soil moistures (>30%). Overall, this work demonstrates that dead bacteria and their eARGs are an overlooked path to antibiotic resistance. More generally, the spread of eARGs in antibiotic-free soil suggests that transformation allows genetic variants to establish in the absence of antibiotic selection and that the soil environment plays a critical role in regulating transformation. IMPORTANCE Bacterial death can release eARGs into the environment. Agricultural soils can contain upwards of 10 9 ARGs g −1 soil, which may facilitate the movement of eARGs from dead to live bacteria through a mechanism of horizontal gene transfer called natural transformation. Here, we track the spread of eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to live antibiotic-susceptible P. stutzeri cells in sterile agricultural soil. Transformation increased with the abundance of eARGs and occurred in soils ranging from 5 to 40% gravimetric soil moisture but was lowest in wet soils (>30%). Transformants appeared in soil after 24 h and persisted for up to 15 days even when eDNA concentrations were only a fraction of those found in field soils. Overall, our results show that natural transformation allows eARGs to spread and persist in antibiotic-free soils and that the biological activity of eDNA after bacterial death makes environmental eARGs a public health concern.more » « less
- 
            Elkins, Christopher A. (Ed.)ABSTRACT Fomites can represent a reservoir for pathogens, which may be subsequently transferred from surfaces to skin. In this study, we aim to understand how different factors (including virus type, surface type, time since last hand wash, and direction of transfer) affect virus transfer rates, defined as the fraction of virus transferred, between fingerpads and fomites. To determine this, 360 transfer events were performed with 20 volunteers using Phi6 (a surrogate for enveloped viruses), MS2 (a surrogate for nonenveloped viruses), and three clean surfaces (stainless steel, painted wood, and plastic). Considering all transfer events (all surfaces and both transfer directions combined), the mean transfer rates of Phi6 and MS2 were 0.17 and 0.26, respectively. Transfer of MS2 was significantly higher than that of Phi6 ( P < 0.05). Surface type was a significant factor that affected the transfer rate of Phi6: Phi6 is more easily transferred to and from stainless steel and plastic than to and from painted wood. Direction of transfer was a significant factor affecting MS2 transfer rates: MS2 is more easily transferred from surfaces to fingerpads than from fingerpads to surfaces. Data from these virus transfer events, and subsequent transfer rate distributions, provide information that can be used to refine quantitative microbial risk assessments. This study provides a large-scale data set of transfer events with a surrogate for enveloped viruses, which extends the reach of the study to the role of fomites in the transmission of human enveloped viruses like influenza and SARS-CoV-2. IMPORTANCE This study created a large-scale data set for the transfer of enveloped viruses between skin and surfaces. The data set produced by this study provides information on modeling the distribution of enveloped and nonenveloped virus transfer rates, which can aid in the implementation of risk assessment models in the future. Additionally, enveloped and nonenveloped viruses were applied to experimental surfaces in an equivalent matrix to avoid matrix effects, so results between different viral species can be directly compared without confounding effects of different matrices. Our results indicating how virus type, surface type, time since last hand wash, and direction of transfer affect virus transfer rates can be used in decision-making processes to lower the risk of viral infection from transmission through fomites.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
